Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Traditional smart meters, which measure energy usage every 15 minutes or more and report it at least a few hours later, lack the granularity needed for real-time decision-making. To address this practical problem, we introduce a new method using generative adversarial networks (GAN) that enforces temporal consistency on its high-resolution outputs via hard inequality constraints using convex optimization. A unique feature of our GAN model is that it is trained solely on slow timescale aggregated historical energy data obtained from smart meters. The results demonstrate that the model can successfully create minute-by-minute temporally correlated profiles of power usage from 15-minute interval average power consumption information. This innovative approach, emphasizing inter-neuron constraints, offers a promising avenue for improved high-speed state estimation in distribution systems and enhances the applicability of data-driven solutions for monitoring and subsequently controlling such systems.more » « less
- 
            As the phasor measurement unit (PMU) placement problem involves a cost-benefit trade-off, more PMUs get placed on higher-voltage buses. However, this leads to the fact that many lower-voltage levels of the bulk power system cannot be observed by PMUs. This lack of visibility then makes time-synchronized state estimation of the full system a challenging problem. In this paper, a deep neural network-based state estimator (DeNSE) is proposed to solve this problem. The DeNSE employs a Bayesian framework to indirectly combine the inferences drawn from slow-timescale but widespread supervisory control and data acquisition (SCADA) data with fast-timescale but selected PMU data, to attain sub-second situational awareness of the full system. The practical utility of the DeNSE is demonstrated by considering topology change, non-Gaussian measurement noise, and detection and correction of bad data. The results obtained using the IEEE 118-bus system demonstrate the superiority of the DeNSE over a purely SCADA state estimator and a PMU-only linear state estimator from a techno-economic viability perspective. Lastly, the scalability of the DeNSE is proven by estimating the states of a large and realistic 2000-bus synthetic Texas system.more » « less
- 
            Generation of realistic scenarios is an important prerequisite for analyzing the reliability of renewable-rich power systems. This paper satisfies this need by presenting an end-to-end model-free approach for creating representative power system scenarios on a seasonal basis. A conditional recurrent generative adversarial network serves as the main engine for scenario generation. Compared to prior scenario generation models that treated the variables independently or focused on short-term forecasting, the proposed implicit generative model effectively captures the cross-correlations that exist between the variables considering long-term planning. The validity of the scenarios generated using the proposed approach is demonstrated through extensive statistical evaluation and investigation of end-application results. It is shown that analysis of abnormal scenarios, which is more critical for power system resource planning, benefits the most from cross-correlated scenario generation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
